Einstein-Hermitian and anti-Hermitian 4-manifolds
نویسندگان
چکیده
منابع مشابه
Symplectic 4-manifolds with Hermitian Weyl Tensor
It is proved that any compact almost Kähler, Einstein 4-manifold whose fundamental form is a root of the Weyl tensor is necessarily Kähler.
متن کاملAffine Hermitian-einstein Metrics
Here c1(E, h) is the first Chern form of E with respect to a Hermitian metric h. The famous theorem of Donaldson [7, 8] (for algebraic manifolds only) and Uhlenbeck-Yau [24, 25] says that an irreducible vector bundle E → N is ω-stable if and only if it admits a HermitianEinstein metric (i.e. a metric whose curvature, when the 2-form part is contracted with the metric on N , is a constant times ...
متن کاملHermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds
In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...
متن کاملHermitian–Einstein connections on principal bundles over flat affine manifolds
Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...
متن کاملalmost-quaternionic Hermitian manifolds
In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2003
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap81-1-2